GamePress

Maximizing Candy from Raid Bosses: Pinap or Golden Razz?

Maximizing Candy from Raid Bosses: Pinap or Golden Razz?
Table of Contents
Introduction

This guide provides a simple formula to determine the optimal strategy that maximizes the expected candies gained from catching a raid boss.

Conclusion
  • The optimal strategy is always using Pinap Berry first and Golden Razz Berry (GRB) last.

  • The number of balls left where you switch to GRB is independent of the number of balls you receive

Let

  • $p_{1}$ be the catch rate of using GRB

  • $c_{1}$ be the number of candies gained of using GRB

  • $p_{2}$ be the catch rate of using Pinap

  • $c_{2}$ be the number of candies gained of using Pinap

Where $0 < p_{2} < p_{1} < 1$ and $0 < c_{1} < c_{2}$. Then:

  • If $p_{1} c_{1} > p_{2} c_{2} $, then the optimal strategy is using GRB in the last $k$ balls, where $$ k = \lceil \log_{1 - p_{1}} ( \frac{ c_{2} - c_{1} }{ c_{1} } \frac{ p_{2} }{ p_{1} - p_{2} } ) \rceil $$

  • If $p_{1} c_{1} \leq p_{2} c_{2} $, then it is optimal to always use Pinap.

For the bosses with base catch rate of 2% (including the current Eon Duo), assuming you have golden badges, and you’ll transfer the boss if caught (and get one candy, during non-candy-event), the optimal strategy is:

Excellent CurveGreat CurveNice Curve
Non-boosted
Weather Boosted

The result above uses the Grand Unified Catch Theory. From it, we calculate the catch rates on a single throw in all cases:

Excellent CurveGreat CurveNice Curve
Non-boosted14.668% / 6.154%12.166% / 5.054%9.837% / 4.054%
Weather Boosted13.207% / 5.514%11.167% / 4.626%8.832% / 3.628%
Derivation

In any case (using GRB or Pinap), denote the catch rate as $p$ and the number of candies gained as $c$.

Let $X_{n}$ be the number of candies gained with $n$ balls to throw. $X_{n}$ takes two possible values:

\[ X_{n} = \begin{cases} c & \quad \text{with the probability of } p \\ X_{n-1} & \quad \text{with the probability of } 1-p \end{cases} \]

Therefore:

$$E[X_{n}] = pc + (1-p)E[X_{n-1}] $$

At the $n$-th last ball, use GRB if and only if

$$ p_{1}c_{1} + (1-p_{1})E[X_{n-1}] > p_{2}c_{2} + (1-p_{2})E[X_{n-1}] $$

That is (with the assumption that $p_{1} > p_{2}$):

$$ E[X_{n-1}] < \frac { p_{1}c_{1} - p_{2}c_{2} } { p_{1} - p_{2} } $$
  • If $p_{1} c_{1} \leq p_{2} c_{2} $, then it is never optimal to use GRB (hence use Pinap only) since

    $$E[X_{n}] \geq 0 \geq \frac { p_{1}c_{1} - p_{2}c_{2} } { p_{1} - p_{2} }$$
  • If $p_{1} c_{1} > p_{2} c_{2} $, then the proof continues.

Note that $E[X_{n}]$ increases in $n$. Hence, if it is better to use GRB at the $n$-th last ball, then it must be also better to use GRB at the $(n-1)$-th last, at the $(n-2)$-th last, ..., and at the last ball, since:

$$ 0 = E[X_{0}] < E[X_{1}] < \dots < E[X_{n-1}] < \frac { p_{1}c_{1} - p_{2}c_{2} } { p_{1} - p_{2} } $$

Likewise, if it is better to use Pinap at the $(n+1)$-th last ball, then it must be also better to use Pinap at the at the $(n+2)$-th last, ..., and at the first ball:

$$ \frac { p_{1}c_{1} - p_{2}c_{2} } { p_{1} - p_{2} } \leq E[X_{n}] < E[X_{n+1}] < \dots $$

Suppose using GRB in the last $k$ balls is the optimal strategy. That is, it is better to use GRB at the $k$-th last ball and to use Pinap at the $(k+1)$-th last ball. Thus:

$$ E[X_{k-1}] < \frac { p_{1}c_{1} - p_{2}c_{2} } { p_{1} - p_{2} } \leq E[X_{k}] $$

Since it is always using GRB from the $k$-th last ball to the very last ball, we have:

\[ \begin{cases} E[X_{k-1}] = (1 - (1-p_{1}) ^ {k-1} ) c_{1} \\ E[X_{k}] = (1 - (1-p_{1}) ^ {k} ) c_{1} \end{cases} \]

Plug in and solve the inequality with respect to $k$, and it will give:

$$ k = \lceil \log_{1 - p_{1}} ( \frac{ c_{2} - c_{1} }{ c_{1} } \frac{ p_{2} }{ p_{1} - p_{2} } ) \rceil $$

--

Results have been independently confirmed by reddit user u/ZicNik in this thread.

Quick Links
Rankings
Attackers Attackers Defenders Gym Defenders
ATK per type crown1 ATK per type (No Legendary)
Raids
Raid Boss ListRaid Boss List Solo Raid Raid Boss CountersRaid Boss Counters
Pokemon
Pokemon List Pokemon CP ListMax CP Region ExclusiveRegion Exclusive
ShinyShiny GrassNesting Legacy MovesLegacy
Tools
IV Calc Egg ListEgg List Breakpoint Calc
CP Calc RaidRaid IV Calc Appraisals
Power Up Cost Catch Rate Calc Type Chart
Guides
Guide Database Glossary Starter Guide